• Sumayya Arshad
  • Dr. Danish Ahmed Siddiqui
Keywords: Bi Quality, Performance Measurement, Competitive Advantage, Firms Performance


The purpose of study is to examine how Business intelligence (Bi) enhances the firm’s performance in Pakistani firms. Pakistan is a growing country and Bi is supposed to be in its initial stages in Pakistan while the data about Bi implementation and use in Pakistani firms are also not many available, especially in statistical patterns. Model and questionnaire were adopted from Peters et al. (2016). Bi system quality is based on Bi infrastructure, functionality and self-service, that aids in getting a more serious competitive advantage and increasing firm performance by enhancing performance measurement capabilities. Data is collected from 300 employees of varied firms in Karachi, where business intelligence is being implemented. Outcomes were analyzed through SEM-PLS. Results suggested that Bi system quality enhances the performance measurement capabilities, that raises the competitive advantage and optimizing the firm carrying out.

Author Biographies

Sumayya Arshad

Research Scholar at Karachi University Business School, University of Karachi, Pakistan

Dr. Danish Ahmed Siddiqui

Associate Professor at Karachi University Business School, University of Karachi, Pakistan


Abernethy, M. A. & Brownell, P. (1999). The role of budgets inorganizations facing strategic change: an exploratory study. Acc. Organ. Soc. 24(3), 189-204.
Alavi, M., & Leidner, D. E. (2001). Review: knowledge management and knowledge management systems: conceptual foundations and research issues. MiSQ. 25(1), 107-136.
Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Andrew F. H. (2013). introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York, NY: The Guilford Press.
Ariav, G., (1992). Information systems for managerial planning and control: a conceptual examination of their temporal structure. J. Manag. inf. Syst. 9(2), 77-98.
Armstrong, J.S., Overton, T., (1977). Estimating nonresponse biasin mail surveys. J. Mark. Res. 14 (3), 396-402.
Arefin, M.S., Hoque, M.R., & Bao, Y.(2015). The impact of business intelligence on organization’s effectiveness: an empirical study. Journal of Systems and information Technology, 17(3), 263-285.
Asadi S., Ida, & Shanks, G. (2015). How Business Analytics Systems Provide Benefits and Contribute to Firm Performance?. ECiS2015 Completed Research Papers. Paper 12.iSBN 978-3-00-050284-2.
Azvine, B., Cui, Z., Nauck, D.D., & Majeed, B. (2006). Real time business intelligence for the adaptive enterprise. In The 8th IEEE international Conference on E-Commerce Technology and The3rd iEEE international Conference on Enterprise Computing, ECommerce, and E-Services (CEC/EEE’06) 29-29. IEEE.
Azvine, B., Cui, Z., & Nauck, D.D. (2005). Towards real-time business intelligence. BT Technology Journal, 23(3), 214-225.Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equationmodels. J.Acad. Mark. Sci. 16(1), 74-94.
Banerjee, M., & Mishra, M. (2017). Retail supply chain managementpractices in India: A business intelligence perspective. Journalof Retailing and Consumer Services, 34, 248-259.
Barclay, D. R., Thompson, R., & Higgins, C. (1995). The partiall east squares approach to casual modelling: personal computer adoption and use as an illustration. Technol. Stud. 2, 285-324.
Barney, J.B. (1991). Firm resources and sustained competitive advantage. J. Manag. 17 (1), 99-120.
Baron, R.M., & Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research:conceptual, strategic, and statistical considerations. J. Pers.Soc. Psychol. 51(6), 1173-1182.
Barua, A., & Mukhopadhyay, T. (2000). Information technology and business performance: Past, present, and future. In: Zmud RW.Framing the Domains of iT Management: Projecting the Future Through the Past (65-84). Cincinnati, Ohio: Pinnaflex Education Resources; 2000.
Baum, J. R., & Wally, S. (2003). Strategic decision speed and firm performance. Strateg. Manag. J. 24(11), 1107-1129.
Bhatt, G.D., & Grover, V. (2005). Types of information technology capabilities and their role in competitive advantage: an empirical study. J. Manag. inf. Syst. 22 (2), 253-277.
Bisbe, J., & Otley, D. (2004). The effects of the interactive use of management control systems on product innovation. Acc.Organ. Soc. 29 (8), 709-737.
Bisbe, J., Batista-Foguet, J. M., & Chenhall, R. (2007). Defining management accounting constructs: a methodological note on the risks of conceptual misspecification. Acc.Organ.Soc. 32(7), 789-820.
Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: classical and bootstrap estimates of variability. Sociol. Methodol. 20 (1), 115-140.
Burton-Jones, A., Straub Jr., D.W., 2006. Reconceptualizing system usage: an approach and empirical test. inf. Syst. Res. 17 (3),228-246.
BRAC (Business Application Research Center). (2009). The Bi Survey 8:The World’s Largest Bi Survey by Nigel Pendse’.
Caseiro, N., & Coelho, A. (2019). The influence of Business Intelligence capacity, network learning and innovativeness on startups performance. Journal of innovation & Knowledge, 4(3), 139-145.
Chapman, C., & Kihn, L. A. (2009). Information system integration, enabling control and performance. Acc. Organ. Soc. 34(2),151-169.
Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An over view of business intelligence technology. Commun. ACM 54(8), 88-98.
Chenhall, R.H. (2003). Management control systems design withinits organizational context: Findings from contingency based research and directions for the future. Acc. Organ.Soc. 2(2-3), 127-168.
Cheung, G.W., & Lau, R.S. (2008). Testing mediation and suppressioneffects of latent variables. Organ. Res. Methods 11(2),296-325.
Chin, W. W. (1998). The partialleast squares approach to structural equation modeling. In: Marcoulides, G.A. (Ed.), Modern Methods for Business Research (195-336). Lawrence Erlbaum Associates, Mahwah, NJ.
Chin, W. W. (2010). How to writeup and report PLS analysis. InVinzi, V. E., Chin, W. W., Henseler, J., Wang, H. (Eds.),Handbook of Partial Least Squares - Concepts, Methodsand Applications in Marketing and Related Fields, (655-690). Springer, Berlin, Heidelberg.
Clark, T. D., Jones, M. C., & Armstrong, C. P. (2007). The dynamic structure of management support systems: theory development,research focus and direction. MiSQ. 31(3), 579-615.
Cramer, D. (1997). Basic Statistics for Social Research - Step-By-Step Calculations & Computer Techniques Using Minitab.London: Psychology Press.
Corte-Real, N., Oliveira, T., & Ruivo, P. (2017). Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379-390.
DeCarlo, L.T. (1997). On the meaning and use of kurtosis. Psychol.Methods 2 (3), 292-307.
Demirkan, H., & Delen, D. (2013). Leveraging the capabilities of service oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55(1), 412-421.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLeanmodel of information systems success: aten-year update. J.Manag. inf. Syst. 19(4), 9-30.
Dilla, W., Janvrin, D. J., & Raschke, R. (2010). Interactive datavisualization: new directions for accounting informationsystems research. J. inf. Syst. 24(2), 1-37.
Dillman, D.A., (2007). Mail and internet Surveys: The TailoredDesign Method. New York: Wiley.
Dodson, G., Arnott, D., & Pervan, G. (2008). The use of business intelligence systems in Australia. ACIS 2008 Proceedings.The Australasian Conference on Information SystemsChristchurch, New Zealand.
Doll, W.J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MiS Q. 12 (2), 259-274.
Elbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting information Systems, 9(3), 135-153.
Elbashir, M. Z., Collier, P. A., & Sutton, S. G. (2011). The role of organizational absorptive capacity in strategic use of business intelligence to support integrated management control systems. Account. Rev. 86 (1),155-184.
Elbashir, M. Z., Collier, P. A., Sutton, S. G., Davern, M. J., & Leech, S.A. (2013). Enhancing the business value of business intelligence:The role of shared knowledge and assimilation. Journal of information Systems, 27(2), 87-105.
Eidizadeh, R., Salehzadeh, R., & Chitsaz Esfahani, A. (2017). Analysingthe role of business intelligence, knowledge sharing and organisational innovation on gaining competitive advantage.Journal of Workplace Learning, 29(4), 250-267.
Emmanuel, C., Otley, D., & Merchant, K. (1990). Accounting forManagement Control. London: Springer.
Fedorowicz, J., & Konsynski, B. (1992). Organization supportsystems: bridging business and decision processes. J.Manag. inf. Syst. 8(4), 5-25.
Ferreira, A., & Otley, D. (2009). The design and use of performance management systems: An extended frame work for analysis.Manag. Account. Res. 20(4), 263-282.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error.J. Mark. Res. 18(1), 39-50.
Foster, S., Hawking, P., & Stein, A. (2005). Business intelligence solution evolution: adoption and use. Bus. intell. J. 10(4),44-54.
Gangadharan, G. R., & Swami, S. N. (2004). Business intelligence systems: design and implementation strategies. in 26thinternational Conference on information Technology interfaces,2004. (139-144). iEEE.
Garg, V. K., Walters, B.A., & Priem, R.L. (2003). Chief executive scanning emphases, environmental dynamism and manufacturing performance. Strateg. Manag. J. 24(8), 725-744.
Gate, A. (2011). Business intelligence management reaches Pakistan.
Grafton, J., Lillis, A. M., & Widener, S. K. (2010). The role of performance measurement and evaluation in building organizational capabilities and performance. Acc. Organ.Soc. 35(7), 689-706.
Grant, R. M. (1996). Prospering in dynamically-competitive environments: organizational capability as knowledge integration. Organ. Sci. 7(4), 375-387.
Green, S. G., & Welsh, A.M. (1988). Cybernetics and dependence:reframing the control concept. Acad. Manag. Rev. 13(2), 287-304.Grublješič, T., & Jaklič, J. (2015). Business intelligence acceptance: Theprominence of organizational factors. information SystemsManagement, 32(4), 299-315.
Hair. Jr., J. F., Black., W. C., Babin., B. J., Anderson., R. E., & L.Tatham.,R. (2006). Multivariant Data Analysis. New Jersey: Pearson International Edition.Henri, J. F. (2006). Organizational culture and performance measurement systems. Acc. Organ. Soc. 31(1), 77-103.
Herschel, R. T., & Jones, N. E. (2005). Knowledge management and business intelligence: the importance of integration. Journal of Knowledge Management, 9(4), 45-55.
Hina, S. (2017). Business Intelligence Solution for Food Industry. Journalof Basic & Applied Sciences, 13, 442-447.
Hou, C. K. (2012). Examining the effect of user satisfaction on system usage and individual performance with business intelligence systems: An empirical study of Taiwan’s electronics industry. International Journal of information Management, 32(6), 560-573.
Howard, P., (2003). Analytics Volume 1: An Evaluation and Comparison. U.K: Bloor Research, Milton Keynes.
Huber, G.P. (1991). Organizational learning: the contributing processes and the literatures. Organ. Sci. 2 (1), 88-115.
Hulland, J. (1999). The use of partial least square (PLS) in strategic management research: A review of four recent studies.Strateg. Manag. J. 20 (2), 195-204.
IşıK, O., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments.information & Management, 50(1), 13-23.
Jarvis, C. B., Mackenzie, S. B., & Podsakoff, P. M. (2003). Acritical review of construct indicators and measurement model misspecification in marketing and consumer research. J.Consum. Res. 30, 199-218.
Jourdan, Z., Rainer, R. K., & Marshall, T. E. (2008). Business intelligence:An analysis of the literature. information Systems Management,25(2), 121-131.
Jr., J. F. H., Matthews, L. M., Matthews, R. L., &Sarstedt, M. (2017). PLSSEMor CB-SEM: updated guidelines on which method to Journal of Multivariate Data Analysis, 1(2), 107.
Jr., H., Ringle, C. & Sarstedt, M. (2011). PLS-sem: Indeed a silver bullet. The Journal of Marketing Theory and Practice. 19, 139-151.
Jr., H., & Black, W.C., Babin, B., Anderson, R., & Tatham, R.L. (2010).SEM: An introduction. Multivariate data analysis: A global perspective. Multivariate Data Analysis: A Global Perspective.(629-686).
Keen, P. G. W. (1991). Shaping the Future: Business DesignThrough information Technology. Harvard Business School Press, Harvard.
Kogut, B., & Zander, U. (1992). Knowledge of the firm,combinative capabilities, and the replication of technology. Organ. Sci. 3(3), 383-397.
Khan, A., Amin, N., & Lambrou, N. (2009). Drivers and barriers to Bisuness Intelligence Adoption: A case of Pakistan. in European and Mediterranean Conference on information Systems 2010.Abu Dhabi, UAE, 1-23.
Kohli, R., & Devaraj, S. (2003). Measuring information technology payoff: a meta-analysis of structural variables in firm-level empirical research. inf. Syst. Res., 14(2), 127-45.
Lee, M. T., & Widener, S. K. (2016). The performance effects of using business intelligence systems for exploitation and exploration learning. J. inf. Syst. isys-51298.
Lee, J., Elbashir, M.Z. Mahama, H., & Sutton, S.G. (2014).Enablers of top management team support for integrated management control systems innovations. int. J. Account.inf. Syst. 51(1), 1-25.
Leidner, D.E., & Elam, J.J. (1995). The impact of executive information systems on organizational design, intelligence,and decision making. Organ. Sci. 6(6), 645-664.
Liang, H., Saraf, N., Hu, Q., & Xue, Y. (2007). Assimilation of enterprise systems: the effect of institutional pressures andthe mediating role of top management. MiSQ. 31(1), 59-87.
Libby, T., & Lindsay, R. M. (2010). Beyond budgeting or budgeting reconsidered? A survey of North American budgeting practice. Manag. Account. Res. 21(1), 56-75.
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: distribution of the product and resampling methods. Multivar. Behav. Res. 39(1), 99-128.
Maiga, A. S., Nilsson, A., & Jacobs, F.A. (2013). Extent of managerial IT use, learning routines, and firm performance: a structural equation modeling of their relationship. int. J. Account. inf. Syst. 14 (4), 297-320.
Malmi, T., & Brown, D.A. (2008). Management control systems as a package - opportunities, challenges and research directions. Manag. Account. Res., 19 (4),287-300.
Mata, F. J., Fuerst, W. L., & Barney, J. B. (1995). Information technology and sustained competitive advantage: are source-based analysis. MISQ. 19(4), 487-505.
Mintzberg, H., 1978. Patterns in strategy formation. Manag. Sci. 24(9), 934-948.Mehta. (2009). Describes limited IT budgets, lack of availability of manpower and IT resources, and volatile business conditions.
Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review:Information Technology and Organizational Performance:An Integrative Model of IT Business Value. MiS Quarterly.28, 283-322.
Mithas, S., Ramasubbu, N., & Sambamurthy, V. (2011). Howinformation management capability influences firm performance. MiS Q. 35 (1), 237-256.
Miyamoto, M. (2015). Application of competitive forces in the businessintelligence of Japanese SMEs. international Journal of Management Science and Engineering Management, 10(4), 273-287.
Moore, D. L., & Tarnai, J. (2002). Evaluating non response error inmail surveys. In: Groves, R.M., Dillman, D.A., Eltinge, J. L.,Little, R. J. A. (Eds.), Survey Non Response. 197-211. NewYork: Wiley.
Naranjo-Gil, D., & Hartmann, F. (2007). Management accountingsystems, top management team heterogeneity and strategicchange. Acc. Organ. Soc. 32(7), 735-756.
Negash, S., & Gray, P. (2008). Business intelligence. In Handbook on decision support systems, 2, (175-193). Berlin: Springer,Heidelberg.Nelson, R.R., & Winter, S.G. (1982). An Evolutionary Theory of Economic Change. Belknap Press, Cambridge, M.A.
Netemeyer, R. G., Bearden, W.O., & Sharma, S. (2003). Scaling Procedures: Issues and Applications. Thousand Oaks: Sage.Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organ. Sci. 5(1), 14-37.
Nunnally, J. C. (1978). Psychometric Theory. New York: McGraw-Hill.Oh, W., & Pinsonneault, A. (2007). On the assessment of the strategic value of information technologies: conceptual and analytical approaches. MiS Q. 31 (2), 239-265.Otley, D.T., & Berry, A.J. (1980). Control, organisation and accounting. Acc. Organ. Soc. 5 (2), 231-244.
Olszak, C. M. (2014). Towards an understanding business intelligence. Adynamic capability-based framework for Business Intelligence.Federated Conference on iEEE, (1103-1110).
Okkonen, J., Pirttimaki, V., Hannula, M., & Lonnqvist, A. (2002). Triangle of Business Intelligence, Performance Measurement and Knowledge Management. in iind Annual Conference on innovative Research in Management, (May 9-11), Stockholm,Sweden.
Peng, J., Viator, R.E., & Buchheit, S. (2007). An experimental study of multi-dimensional hierarchical accounting data: drill down paths can influence economic decisions. J. inf. Syst.21(2), 69-86.
Peters, M. D., Wieder, B., Sutton, S. G., & Wakefield, J. (2016). Business intelligence systems use in performance measurement capabilities:Implications for enhanced competitive advantage. International Journal of Accounting information Systems, 21, 1-17.
Podsakoff, P.M., & Organ, D.W. (1986). Self-reports in organizational research: problems and prospects. J. Manag. 12 (4), 531-544.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P.(2003). Common method biases in behavioral research:acritical review of the literature and recommended remedies. J. Appl. Psychol. 88 (5), 879-903.
Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol.63, 539-569.
Popovič, A., Puklavec, B., & Oliveira, T. (2019). Justifying business intelligence systems adoption in SMEs: Impact of systems use on firm performance. industrial Management and Data Systems, 119(1), 210-228.
Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods, 40(3), 879-891.
Raheela. A., Saman, H., & Sukaina, M. (2017). Department of ComputerScience & Software Engineering, NED University of Engineering& Technology, Karachi, Pakistan.
Ranjan, J. (2008). Business justification with business intelligence. Vine,38(4), 461-475.
Rai, A., Patnayakuni, R., & Seth, N. (2006). Firm performance impacts of digitally enabled supply chain integration capabilities. MiS Q. 30 (2), 225-246.
Ravichandran, T., & Lertwongsatien, C. (2005). impact of information systems resources and capabilities on firm performance: aresource-based perspective. 23rd Inter-national Conference onInformation Systems, Barcelona, Spain.
Ray, G., Muhanna, W. A., & Barney, J. B. (2005). Information technology and the performance of the customer service process: are source-based analysis. MiSQ. 29(4), 625-652.
Ringle, C. M., Wende, S., & Will, S. (2005). Smart PLS 2.0 (M3) Beta.Hamburg: Hamburg University of Technology.
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor’scomments: acritical look at the use of PLS-SE Min MISquarerly. MiSQ. 36(1), iii-xiv.
Rouhani, S., & Savoji, S. R. (2016). A success assessment model for BItools implementation: an empirical study of banking Journal of Business intelligence Research (iJBiR),7(1), 25-44.
Rubin, E., & Rubin, A. (2013). The impact of business intelligence systems on stock return volatility. information & Management,50(2-3), 67-75.
Sangari, M. S., & Razmi, J. (2015). Business intelligence competence,agile capabilities, and agile performance in supply chain: Anempirical study. The international Journal of Logistics Management, 26(2), 356-380.
Schilke, O. (2013). On the contingent value of dynamic capabilities forcompetitive advantage: The nonlinear moderating effect of environmental dynamism. Strategic Management Journal, 35(2),179-203.
Schlafke, M., Silvi, R. & Moller, K. (2013), A framework for business analytics in performance management. international Journal of Productivity and Performance Management, 62 (1), 110-122.
Schubert, P., Williams, S. P., & Woelfle, R. (2011). Sustainable Competitive Advantage in E-Commerce and the Role of theEnterprise System. international Journal of Enterprise information Systems, 7(2), 1-17. doi: 10.4018/jeis.2011040101.
Seah, M., Hsieh, M., & Weng, Pu-D. (2010). A case analysis of Savecom:The role of indigenous leadership in implementing a business intelligence system. international Journal of informationManagement. 30. 368-373. 10.1016/j.ijinfomgt.2010.04.002.
Seufert, A., & Schiefer, J. (2005). Enhanced business intelligence supporting business processes with real-time business analytics.In 16th International Workshop on Database and Expert Systems Applications (DEXA’05) (919-925). IEEE.
Shollo, A., & Galliers, R. D. (2015). Towards an understanding of therole of business intelligence systems in organisational knowing. inf. Syst. J.
Shrout, P.E., & Bolger, N. (2002). Mediation in experimental and non experimental studies: new procedures and recommendations.Psychol. Methods 7 (4), 422-445.Simons, R. (1990). The role of management control systems in creating competitive advantage: new perspectives. Acc.Organ. Soc. 15 (1), 127-143.
Simons, R. (1991). Strategic orientation and top management attention to control systems. Strateg. Manag. J. 12(1), 49-62.
Simons, R. (1994). How new top managers use control systems as levers of strategic renewal. Strateg. Manag. J. 15 (3), 169-189.
Simons, R. (1995). Levers of Control: How Managers Use innovative Control Systems to Drive Strategic Renewal.Boston: Harvard University Press.
Simons, R., Davila, A., & Kaplan, R. S. (2000). Performance Measurement and Control System for implementingStrategy. Prentice Hall, Upper Saddle River, N. J. Taylor,A. B., MacKinnon, D.P.
Tein, J. Y. (2008). Tests of the three-path mediated effect. Organ.Res. Methods 11 (2), 241-269.Teece, D.J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strateg. Manag. J. 18 (7), 509-533.
Tessier, S., & Otley, D. (2012). A conceptual development ofSimons’ levers of control framework. Manag. Account. Res.23 (3), 171-185.
Thomas, J. B., Sussman, S. W., & Henderson, J. C. (2001).Understanding “strategic learning”: Linking organizational learning, knowledge management and sense making. Organ.Sci. 12(3), 331-345.
Torres, R., Sidorova, A., & Jones, M. C. (2018). Enabling firm performance through business intelligence and analytics: A dynamic capabilities perspective. information & Management, 55(7), 822-839.
Tourangeau, R., Rips, L.J., & Rasinski, K., (2000). The Psychology of Survey Response. Cambridge: Cambridge University Press.
Trieu, V. H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111-124.
Trkman, P., McCormack, K., De Oliveira, M. P. V., & Ladeira, M. B.(2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318-327.
Turban, E., Sharda, R., Aronson, J., & King, D. (2008). Business intelligence: A Managerial Approach, Pearson Prentice Hall.Vandenbosch, B. (1999). An empirical analysis of the association between the use of executive support systems and perceived organizational competitiveness. Acc.Organ.Soc.24(1),77-92.
Vandenbosch, B., & Higgins, C. A. (1995). Executive support systems and learning: a model and empirical test. J. Manag. inf. Syst.12(2), 99-131.
VomBrocke, J., Braccini, A. M., Sonnenberg, C., & Spagnoletti, P.(2014). Living IT infrastructures-an ontology-basedapproach to aligning it infrastructure capacity and businessneeds. int. J. Account. inf. Syst. 15 (3), 246-274.
Vukšic, V. B., Bach, M. P., & Popovic, A. (2013). Supporting performance management with business process management and business intelligence: A case analysis of integration and Journal of information Management, 33(4), 613-619.
Wade, M., & Hulland, J. (2004). The resource-based view andinformation systems research: review, extension andsuggestions for future research. MiSQ. 28(1), 107-142.
Werner, V., & Abramson, C. (2003). The Critical Business Need to ReduceElapsed Time. Bus. intell. J, 8.Wetzels, M., Odekerken-Schroder, G., & van Oppen, C. (2009).Using PLS path modeling for assessing hierarchialconstruct models: guide lines and empirical illustration.MiS Q. 33(1), 177-195.
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., &Childe, S. J. (2017). Big data analytics and firm performance:Effects of dynamic capabilities. Journal of Business Research,70, 356-365.
Widener, S. K. (2007). An empirical analysis of the levers of control frame work. Acc. Organ. Soc. 32(7), 757-788.
Wold, H. (1982). Soft modeling: the basic design and some extensions. Systems Under Indirect Observations:Causality, Structure, Prediction. K. G. Joreskog and H. Wold, Amsterdam, North-Holland, 1-54.
Wieder, B., Ossimitz, M., & Chamoni, P. (2012). The impact of business intelligence tools on performance: a user satisfaction Journal of Economic Sciences and Applied Research, 5(3), 7-32.
Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems, Journal of Computer information Systems,50 (3), Spring, 23-32.
Yigitbasioglu, O. M., & Velcu, O. (2012). Are view of dashboards in performance management: implications for design andresearch. int. J. Account. inf. Syst. 13(1), 41-59.
Yogev, N., Even, A., & Fink, L. (2013). How Business Intelligence Creates Value. international Journal of Business intelligence Research,4(3), 16-31.
Ziora, A. C. L. (2015). The Role of Big Data Solutions in the Management of Organizations. Review of Selected Practical Examples.Procedia Computer Science, 65, 1006-1012.
How to Cite
Arshad, S., & Siddiqui, D. D. (2020). BUSINESS INTELLIGENCE AND FIRM PERFORMANCE: ASSESSING VALUE AND FUTURE DIRECTIONS IN PAKISTANI FIRMS. Journal of Business Strategies, 14(1), 63-98. Retrieved from